INRA

Increasing soybean production in Europe: impact on cropping systems and environment

Julie Constantin¹, Hélène Tribouillois², Etienne-Pascal Journet¹, Philippe Debaeke¹, Hélène Raynal¹ ¹ University of Toulouse, INRAE, UMR AGIR, Castanet-Tolosan, France ² Terres Inovia, Baziège, France

> Soybean in Europe and in the world

INRAC

Source: IDH European-Soy-Monitor-2017

Several programs to be more self sufficient in Europe (EraNet LegumeGAP, ANR soystainable) p. 2

> Objectives of our simulation study in Europe

For soybean production :

- Analyse the potential yield for soybean in contrasted contexts (temperature, radiation and unlimited water)
- Estimate the yield gap with limited water with rainfed crop
- Evaluate the climate change impact on crop yield in potential and water-limited conditions

At the crop rotation scale :

- Analyse the impact on non legume crop to introduce soybean both in irrigated and rainfed systems
- Quantify the impact of soybean introduction on environmental components : water drainage, nitrate leaching, C storage, N₂O emissions and GHG balance.

Soybean was previously calibrated in STICS v9.2 for several maturity groups (Schoving et al., 2020; Nendel et al., 2022)

> Design of the numerical experiment

副國國	Crop	Cultivar(s)	Fertilization (kgN/ha)	Water stress for irrigation	Soil tillage	Crop residues
	Wheat	1	180	0.70	0 days	Straws & roots
Ŵ	Maize	8 (Very early to very late)	180	0.85	8 days after barvest	
	Soybean	7 (0000 to II)	0	0.85		

- 100 grid cells of 25x25 km²
- Soils : European Soil Database at 1 km² resolution (Hiederer, 2013)
- Climate : based on the dataset Webber et al. 2018.
 - Baseline (1980–2010) JRC Agri4Cast database (version 2.0)
 - Climate Models (GCM): MPI-ESM-MR

> 100 sites selected to cover Europe

> Modelling chain with STICS v9.2

models (b), 2040-2069 RCP 8.5 scenario ensemble mean of five global climate models (c). Note that MG III was only introduced for the GHG balance = f(N,O direct & indirect, C storage, N fertilizer) From Nendel et al., 2022

future scenarios.

> Positive effect of irrigation and CC for both crop yields

soj_4.5_SB_rain

> Potential and limited yield of soybean vary widely from North to South of Europe

INRA

Potential soybean Yield (t/ha)

Reduced irrigation for soybean compared to maize

INRA@

Slight increase of wheat yield in irrigated systems

). 9

> Positive impact on drainage and N leaching in most cases

Less C storage due to lower biomass residues

> GHG balance decreases with soybean due to lower fertilization

INRA@

Difference in soybean-wheat vs maize-wheat in future rainfed systems

> To conclude

About soybean production in Europe :

✓ High potential but high yield gap in the South vs. low yield gap but low potential in the North

- ✓ Interesting potential and relatively low yield gap in the mid-North and mid-South
- ✓ Positive impact of climate change on the potential yield (but negative on YG for mid-south)
- ✓ Reduced need for irrigation with soybean than maize (lower biomass)

In both present and future climate, the introduction of soybean in rotation:

- ✓ Increased water drainage, particularly in rainfed systems
- \checkmark Reduced nitrate leaching and N₂O emissions related to fertilizer
- ✓ Decreased soil C storage due to lower residue of soybean compared to maize
- ✓ Decreased GHG balance, reducing the environmental impact of agriculture

> Perspectives

- Simulating more accurately mineral N fertilization with SticsTkR (Willaume et al, this morning)
- Simulating a wider range of grid cells to cover Europe better
- > Testing more agroecological cropping systems with cover crops
- Simulating crop rotation including both soybean and maize
- Using STICS v10 with one soybean plant file including all maturity groups

Thank for your attention!