> Evolution under climate change of the resilience of the services provided by the cultivated areas of the Pays de Fougères

REDELAC (2023 -2024) - Resilience And Sustainability Of Lowland Dairy Farms To Climate Hazards

Graux Anne-Isabelle, Patrick Chabrier, Eric Casellas, Klervi Le-Floch, Patrice Lecharpentier, Renan Le-Roux, Fabien Ferchaud

INR AP

INRAØ

Anne-Isabelle Graux 15 November 2023

- Study the **impact** of future climate and anticipate the **adaptive evolution** of dairy farms
- Test a methodology based on models/tools
 - availability of feeds and the evolution of soil C stocks

Indicators' evolution of climate and feasibility of crop/grassland management practices

AQAL-farm

 adaptation of farms to feed resources, and the consequences for milk production and forage autonomy

 changes in the environmental footprint of farms under climate change

- How can feed production and C storage services evolve on the scale of the farm's cultivated area?
- What **differences** can be expected between
 - farms with different forage systems?
 - future climates scenarios and time horizons?
 - **locations** within a territory?
- Will dairy farms experience more or less years when the herd's feed requirements are not met? And where C stock is moving away from its trend?
- What climatic conditions explain these exceptional years in terms of feed production? And C stock change ?

> REDELAC's study is limited to

- A small (940 km²) area in Brittany: the Pays de Fougères
 - High dairy farm density, interest shown by local stakeholders in our questions
 - Agricultural territory, soil and (oceanic temperate) climate favorable to production
 - Drawn up a territorial CAEP => halve agricultural GHG emissions by 2050

> REDELAC's study is limited to

- 3 dairy farms representative of farms in Brittany (not real farms)
 - ≠ forage systems

	Farm	Description	Corn in forage area (%)
	cc1	Conventional, corn all year round	48
1 V	cc2	Conventional, corn silo closed 3 months	29
t'a	cc8	Organic, all-grass	0

- stics
 - Research version derived from v10.0, which fixes some bugs
 - Improved parameterisation of grasslands
 - BNF activation to simulate white clover in ryegrass-clover associations
- Resolution:

15 November 2023

• Pedoclimatic units (PCU)

= intersection of climate & soil resolution

grays polygones

30-year time horizons
 INRA©
 Anne-Isabelle Graux

> STICS simulations

• Simulations of rotations and permanent grasslands for

- 1 PCU (soil with WHC=80mm <= geographic database of French soils + previous studies)
- Preliminary results

VARNING

- 1 climate scenario <= DRIAS-2020 dataset
 - 1 global-regional climate model pair: CNRM-CM5/ALADIN63
 - 1 GHG emission scenario: rcp8.5 (no climate regulation, +5°C by 2100)

2 uses of temporary grassland ⇒ grazing, hay/ silage

- Calculation of annual feed and soil C stocks at farm scale
 - Based on areas allocated to each rotation and grassland/crop yield or soil C stock simulated by STICS

- Losses from field to animal, excepted from grazed grass
- Other resilience indicators
 - Theoretical herd feed requirements based on herd size/composition and theoretical feed intake of heifers/cows
 - "Deficit" years = years when feed stocks from the year's production < feed requirements
- "Resistance" = feed stocks from the year's production / feed
 requirements in deficit years

Evolution of feed production service on the scale of the farm's cultivated area

- Feed stocks **7** by +15% in h1, +30% in h2 and by +40% in h3
- Fewer years for which production does not meet the herd's DM feed requirements (→ deficit years and resistance ↗)

> Evolution of C storage service on the scale of the farm's cultivated area

- Ref. period: the all-grass organic farm stores C, unlike the other 2 farms whose C stocks are stable
- Future: trend towards soil C depletion or lower stock increase for the all-grass organic farm

> What explains these evolutions at farm scale ?

• **↗** in feed stocks

- Slight 7 in annual rainfall (changes in distribution)
- 7 in temperature
- \nearrow in PET but **stable actual ET** due to CO₂ effect

Period	R (mm)	T (°C)	PET (mm)	CO ₂ (ppm)
ref	1015	10.8	805	354
h1	+15	+0.9	+78	+119
h2	+29	+1.7	+113	+224
h3	+55	+3.3	+200	+453

> What explains these evolutions at farm scale ?

• Trend towards lower soil C stocks

> SOC mineralization not fully offset by **> C inputs** (with • only a fraction stabilised in SOM

cc1			cc2		cc8	
Period	Min. (t C/ha)	Inputs (t C/ha)	Min. (t C/ha)	Inputs (t C/ha)	Min. (t C/ha)	Inputs (t C/ha)
ref	3.5	4.0	3.6	4.1	4.5	5.4
h1	+ 0.4	+ 0.4	+ 0.5	+ 0.5	+ 0.5	+ 0.6
h2	+ 0.8	+ 0.9	+ 0.9	+ 1.1	+ 1.0	+ 1.2
h3	+ 1.3	+ 1.4	+ 1.4	+ 1.6	+ 1.7	+ 1.9

Based on the simulated example (one PCU and one climate scenario), in the Pays de Fougères:

- Climate still favorable to production in the future
- Increase in overall feed stocks and better coverage of herd feed requirements
- **C destocking** or lower C stocking for all-grass organic farms
- N₂O emissions slightly enhanced by climate change
- ⇒ Possible antagonism between food security/local consumption issues and C footprint reduction?

 \Rightarrow Possible evolution of farms towards greater proportion of INR grass and fewer concentrates in the animal diet?

Anne-Isabelle Graux 15 November 2023

- Extension of STICS simulations to the entire plan
 - Simulation for all PCU in the territory and all future climate scenarios

- Additional analysis of results
 - Resilience of soil C storage
 - Changes in forage quality
 - Accessibility of grass for grazing (soil bearing capacity)
 - Animal heat stress
- Supply of information required for AQAL-farm model simulations
 - Grass growth and accessibility
 - Annual feed stocks
 - Forecast feeding plan, etc.

> Thank you for your attention

> The Pays de Fougères territory

• Key figures (sources: INSEE 2019, RA 2020)

	Couesnon Marches de Bretagne	Fougères Agglo.	Total
Population (hab.)	21951	55 874	77825
Area (km2)	400	540	940
UAA (ha)	28 719	40566	69285 (74%)
Farms	426	750	1176
Dairy farms	191	316	507 (43%)
Farmers	744	917	1661
Anne-Isabelle Graux			

15 November 2023

> Crop and grassland management

For each crop/grassland in a rotation

Management <= several sources of information

- descriptive sheets => nature and annual quantities of mineral and organic fertilizers
- existing managements for similar rotations in Brittany, as defined in Pellerin et al. (2019) => sown varieties, type and calendar of operations
- chamber of agriculture expertise
- Fixed calendar of operations <u>except for crop/grassland harvesting</u> and grassland grazing dates
- Fixed quantities of fertilizers, <u>except for</u> animal restitutions, which are calculated on the basis of grass production

> Study limits

- STICS model
 - Rotations have been adapted
- Simulations
 - Simulated yields have been corrected to approximate herd theoretical feed requirements over the reference period
 - The possible diversification of forage systems in the future, and the expansion of cultivated areas are not accounted for
 - Soil C stock values were reset at the beginning of each time horizon

 obtained by multiplying the yield of a crop/grassland simulated by STICS by the area allocated to it annually in each crop rotation.

> Feed stocks

	Farm	Crop	Crop valorization	Rotation	Area (ha)
	cc2	wheat 📈	form concentrate then wheat grain cale	rot2.2a	4
			iann concentrate then wheat grain sale	rot2.2b	1
		corn	corn silage	rot2.1a	12
				rot2.1b	3
				rot2.2a	4
				rot2.2b	1
		grassland	hay	rot2.1b	6
				rot2.2b	3
			grazing	rot2.3	5
				rot2.1a	24
				rot2.2a	12
	cc8	meslin	farm concentrate	rot8.1a	7.5
				rot8.1b	7.5
			grass silage and hay	rot8.1b	35
		grassland 🦯	grazing	rot8.2	5
				rot8.1a	35
	Ŕ	INRAØ	FAR		
		Anne-Isabelle Graux 15 November 2023			p. 23

> Herd's theoretical feed requirements

 calculated on the basis of the number of cows and heifers and the feed distributed to them (information provided by the descriptive sheets)

	Farm	Crop	Crop valorization	Feed requirements (t DM)
		corn 👝	corn silage	258
	cc1	wheat	sale wheat grains	0
N		grassland	grazing	144
		grassiariu	hay First	28
		corn	corn sila	231
	cc2	wheat	farm concentrate then wheat grain sale	7
		grassland	grazing	301
	V E	grassiario	hay	59
		meslin	farm concentrate	66
	cc8	grassland	grazin <u>e</u>	319
	1	grassiariu	grass silage and hay	238
Ŵ	INRA Anne-I	sabelle Graux		p. 24
	15 No	wember 2023		