

Impacts of cover crops on N mineral fertilization and consequences for agro-environmental performances of maize monocrop in climate change context.

Magalí Willaume, Hélène Raynal, Jacques-Eric Bergez, Julie Constantin UMR AGIR – INRAE & Toulouse INP ENSAT –Toulouse, France

> Hypotheses and general approach

> Adaptation and mitigation to climate change with agroecological practices

- Store C in the soil with cover crops
- Reduce/substitute synthetic mineral N intakes with legume covercrops
- Adjust the dose of mineral fertilizer (balance)
- Simultaneous evolution of practices under the effect of the CC
- Not only a « calendar »
- Coupling decision models to STICS crop model
 - for sowing and fertilization date
 - for mineral N intakes (annual forecast supply balance)

> Six agro-ecological scenarios

Main Crop: Maize		Fallow period management			
		Bs Bare soil	Fb Fabaceae (fababean) covercrop	Rp Brassicaceae (rapeseed) cover crop	
Mineral N fertilization amount	N_{fix} Fixed (190 kgN.ha ⁻¹ .yr ⁻¹)	Bs_N _{Fix} (ref)	Fb_N _{Fix}	Rp_N _{Fix}	
	N _{bal} adapted yearly	Bs_{Bal}	Fb_{Bal}	Rp_N _{Bal}	

> Six agro-ecological scenarios , five studied sites

Main Crop: Maize		Fallow period management		
		Bs Bare soil	Fb Fabaceae (fababean) covercrop	Rp Brassicaceae (rapeseed) cover crop
Mineral N fertilization amount	N _{fix} Fixed (190 kgN.ha ⁻¹ .yr ⁻¹)	Bs_N _{Fix} (ref)	Fb_N _{Fix}	Rp_N _{Fix}
	N _{ها} adapted yearly	Bs_N _{Bal}	Fb_N_Bal	Rp_N _{Bal}

Site 4 Site 1 Site 5 Pyrénées-Atlantiques Gers Hte Garonne Brunisol Calcosol Calcosol P. 5

> Six agro-ecological scenarios , five studied sites

Main Crop: Maize		Fallow period management		
		Bs Bare soil	Fb Fabaceae (fababean) covercrop	Rp Brassicaceae (rapeseed) cover crop
Mineral N fertilization amount	N _{fix} Fixed (190 kgN.ha⁻¹.yr⁻¹)	Bs_N _{Fix} (ref)	Fb_N _{Fix}	Rp_N _{Fix}
	N _{bal} adapted yearly	Bs_N _{Bal}	Fb_N_Bal	Rp_N _{Bal}

• Continuous run over 40 years

→ 2010-2050 (RCP DRIAS les futurs du climat

 Site 4
 Site 1
 Site 5

 Pyrénées-Atlantiques
 Site 1
 Site 5

 Brunisol
 Site 3
 Site 5

 Pyrénées-Atlantiques
 Site 1
 Site 5

 Brunisol
 Site 3
 Site 5

Site 2

Gers

Luvisol

Site 3

Landes

Podzosol

> Earlier sowing and harvest dates

> Changes in N fertilization need

> Changes in N fertilization need

INRA@

INP Ensat

AaroToulouse

> Changes in N fertilization need

INRA@

INP Ensat

AaroToulouse

> Due to contrasted N budget patterns

> Due to contrasted N budget patterns

> Due to contrasted N budget patterns

Increased C storage in the soil with cover crop

Increased C storage in the soil with cover crop

INRA

INPEnsat L'Agrotoulouse

> Adapting fertilization and introducing cover crop simultaneously to control nitrate leaching

INRA@

INP Ensat L'Agrotoulouse

> Importance of C storage and N fertilization in GHG balance

N management is essential !

> Importance of C storage and N fertilization in GHG balance

> Conclusion- methodological perspectives

- > An operational modeling chain in R :
 - Adaptable for other practices (dates of tillage, organic fertilization, variety choice ...) and other crops
 - > Automatic and simultaneous changes due to climate change for crops and practices
- Potential application on larger spatial scales and more diversified rotations

> Conclusion- Agro-environmental performances

Changes due to climate change for crops and practices

Influence of cover crops and/or adapting N fertilization

- > Major changes in N fertilization needs with maintained yield
- Increased SOC
- Range depends on pedoclimate

Major potential for mitigation but N management is essential

> Thank you for your attention!

> Dynamic calculation of N fertilization with STICS variables

