

Spring barley yield and potential northward expansion under climate change in Canada

Guillaume Jégo¹, Marianne Crépeau¹, Qi Jing², Brian Grant², Ward Smith², Alex J. Cannon³, Jean Lafond⁴, Miles Dyck⁵, Budong Qian²

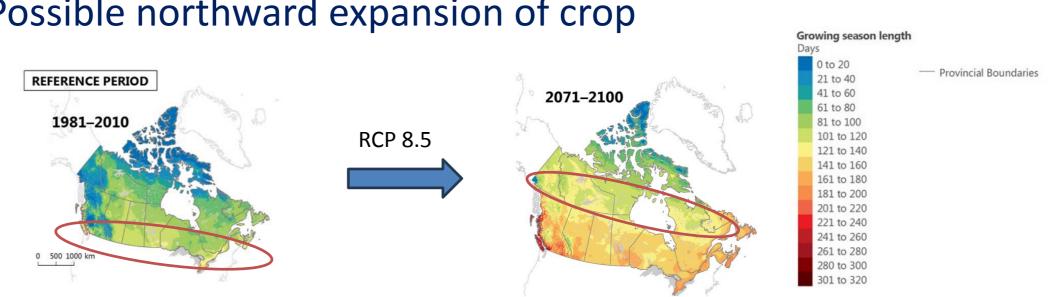
¹ Agriculture and Agri-Food Canada, Quebec Research and Development Centre, Québec, QC, Canada
² Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
³ Environment and Climate Change Canada, Climate Research Division, Victoria, BC, Canada
⁴ Agriculture and Agri-Food Canada, Normandin Research Farm, Normandin, QC, Canada
⁵ Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada

XIII séminaire STICS, 13-16 novembre 2023, Bordeaux, France

Background

 In Canada, growing season length is increasing with climate change

1980


Year

Source: Natural Resources Canada

1990

2000

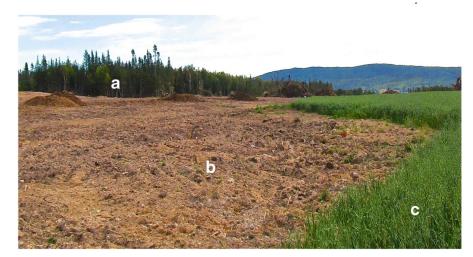
2010

60

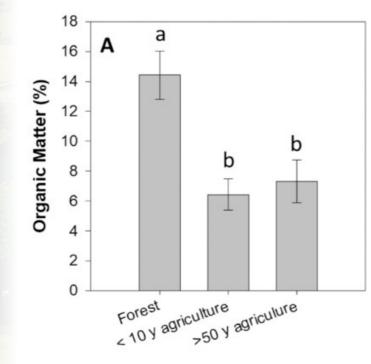
1950

1960

1970


Possible northward expansion of crop

Past trends in growing season length for Canada (1950 to 2010)


Source: Natural Resources Canada

Background

 Impact of land conversion from boreal forest to agriculture on soil organic matter:

Altdorff et al., 2021

The impact of land conversion from boreal forest to agriculture on soil health indicators

P. Benalcazar^a, A.C. Diochon^b, R. Kolka^c, R.R. Schindelbeck^d, T. Sahota^a, and B.E. McLaren^a

^aFaculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada; ^bDepartment of Geology, Lakehead University, Thunder Bay, ON, Canada; ^cUSDA Forest Services Northern Research Station, Grand Rapid, MN 55744, USA; ^dCornell University, 1005 Bradfield Hall, Ithaca, NY 14853, USA

Can. J. Soil Sci. 102: 651-658 (2022) | dx.doi.org/10.1139/CJSS-2021-0170

Evaluation of the potential of crop growth before land conversion.

Objectives

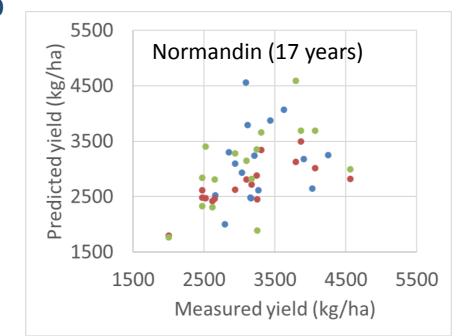
- Global objective of the project: to assess the potential impacts of climate change (CC) on the main crops grown in Canada (spring barley, spring wheat, corn, soybean, canola, alfalfa and potato) and their possible northward expansion
- Specific objectives of this presentation: impact of CC on spring barley growth:

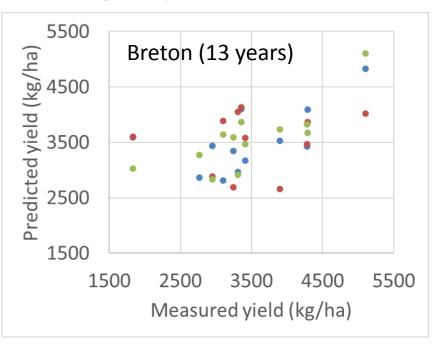
1. in **regions** where barley is **currently produced**

2. in **northern regions** where it may be grown **in the future**.

Methodology: calibration / vali

- Two datasets : Normandin (Quebec) and Breton (Alberta)
- For STICS, calibration of parameters from the proto_barley_plt.xml file




 Three crop models:

> • STICS (V10 beta)

• DNDC (DNDCv.CAN)

• DSSAT (V. 4.7.5)

Model validation for harvested grain yield:

NRMSE (%): 24.5 / 22.2 / 20.7

NRMSE (%): 21.5 / 28.9 / 17.8

Methodology: climate change simulations

18 climate

scenarios

- 3 soil-crop models : SIG DSSAT DNDC
- 6 climate models : CanESM5, GFDL-ESM4, IPSL-CM6A, MPI-ESM1-2, MRI-ESM2 and UKESM1

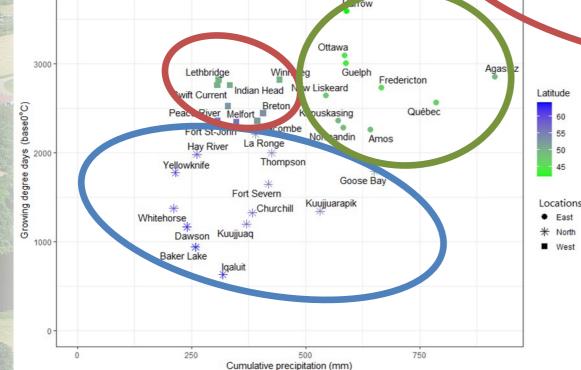
• 3 SSPs : SSP1-2.6, 3-7.0 and 5-8.5

• 120 years (1981-2100) per climate scenario

• 2 types of simulation: potential (no N and water stress) and rainfed (no N stress)

Methodolo

Dawson

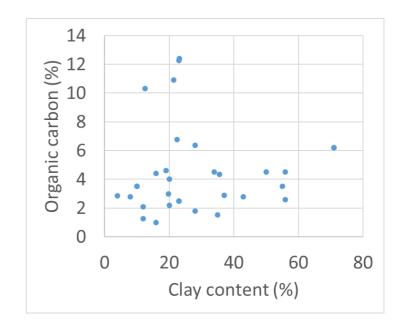

Climate classifica

Bsk

Csa

gy: Climate change simulations 32 locations

across Canada



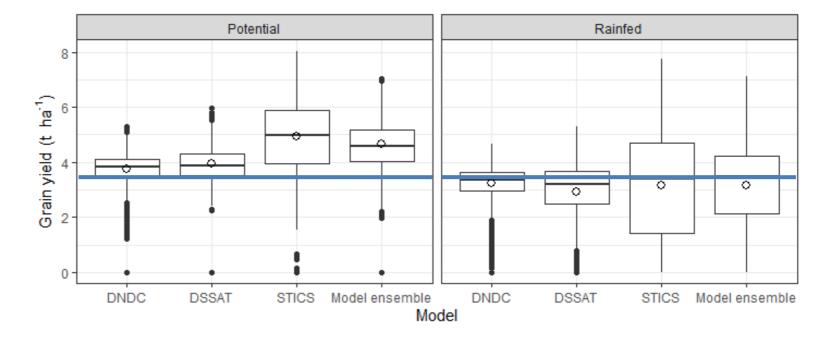
Cold continental climate with short growing season

Humid continental climate Dry continental climate Locations where spring barley is currently grown

Methodology: climate change simulations

- Crop management:
 - Seeding date adjusted for each year following the criteria developed by Bootsma and De Jong (1988)
 - Harvest at maturity
 - Continuous simulations (no reset)
- Soil properties = most common soil around each location

Methodology: climate change simulations


- Output analysis:
 - -Three time periods:

Ref	NF	DF	
Reference	Near Future	Distant Future	
1981 - 2010	2021 - 2050	2051 - 2080	
- Crop vield			

- -Crop failure:
 - Yield <1 t ha⁻¹ (~2 times below the profitability threshold)
 - Or flowering later than day 250

Results - Yield prediction in the reference period

Average potential and rainfed yields predicted by the three models for all locations and climate scenarios

- Yield predictions for the reference period are close to the average observed yield in Canada (3.5 t ha⁻¹)
- Results are averaged across the three models for the rest of the presentation

Results - Climate change projections

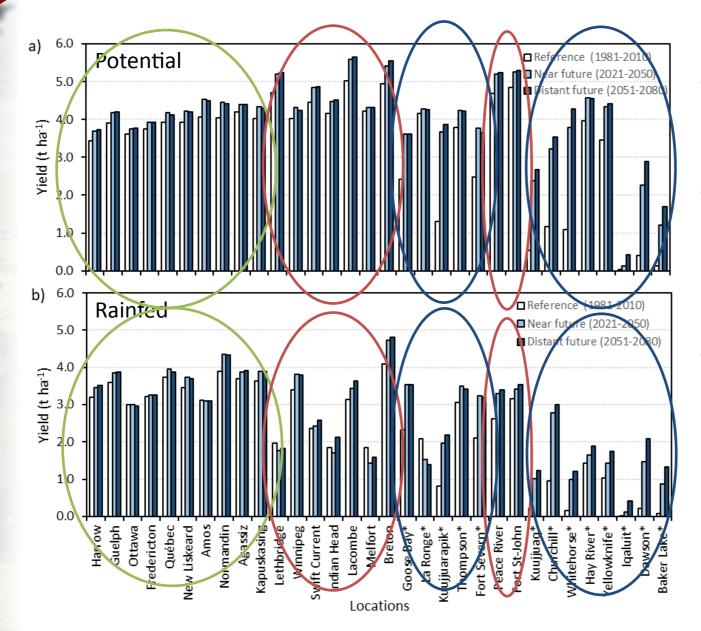
Near future (2021-2050) 1400 Distant future (2051-2080) 1200 Growing degree-days 1000 800 changes 600 400 200 0 Agassiz Harrow Guelph Ottawa Québeo Amo Normandir apuskasing Lethbridg(Winnipe wift Curren ndian Head Lacombe Melfor Bretoi rederictor lhompson Peace Rive w Liskear La Ronge ort Severn Fort St-Joh Kuujjuaq Churchill Vhitehorse ellowknife Goose Bay uujjuarapik Near future (2021 - 2050)Cumulative precipitation 3 150 stant future (2051-2080) 100 50 changes (mm) -50 -100 Ottawa Harrow Guelph Amos Agassiz rederictor Québec New Liskeard Normandir ethbridge -acomb Melfor Bretor apuskasin ian Hea ujjuarapik Iqaluit Winnipe oose Bay -a Ronge ort St-Joh Kuujjuaq Vhitehorse ellowknife Currel Churchil ay River Baker Lake ompsoi eace Riv Sever

 Projected GDD* increases from 300 to 500 in NF and 600 to 900 in DF.

 Small projected increases of precipitation in eastern and northern locations

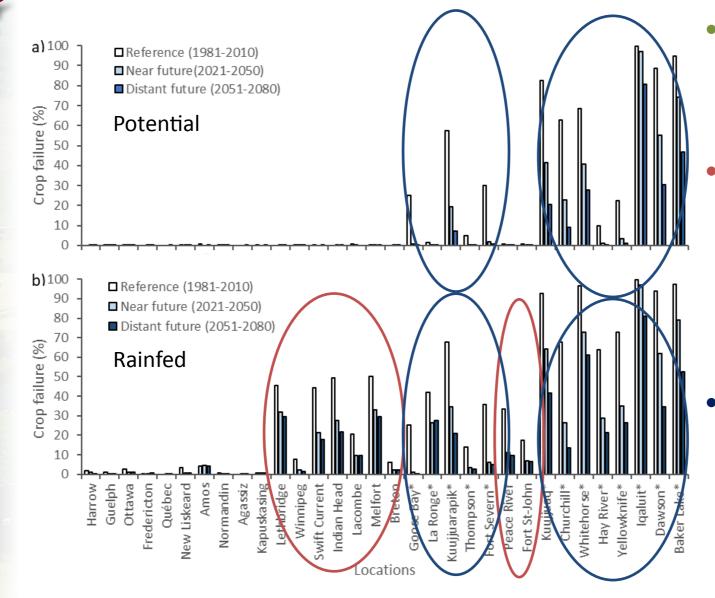
*GDD base temperature = 0°C

Results - Seeding and harvest dates changes


	Sowing (Julian Day)		
	Ref	NF	DF
Western locations	129 ±8	121 ±8	117 ±9
Eastern locations	143 ±9	136 ±9	133 ±10
Northern (Cold) locations	157 ±11	155 ±12	153 ±13

 Seeding dates are expected to be 2 to 8 days earlier in NF and 4 to 12 days earlier in DF compared to the reference period

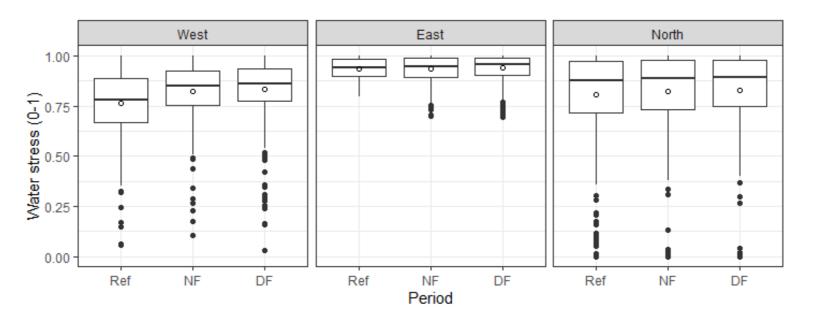
	Maturity (Julian Day)		
	Ref	NF	DF
Western locations	218 ±14	205±11	198±2
Eastern locations	224 ±15	213±13	206±13
Northern (Cold) locations	254 ±25	248±27	239±27


• Maturity dates are expected to be 6 to 13 days earlier in NF and 15 to 20 days earlier in DF compared to the reference period

Results - Yield prediction in the NF and DF

- Small yield variations in eastern locations
- Slight yield increases in most western locations
- Large yield increases in most northern locations

Results - Crop failure in the NF and DF



Crop failures are low in regions where spring barley is currently grown.

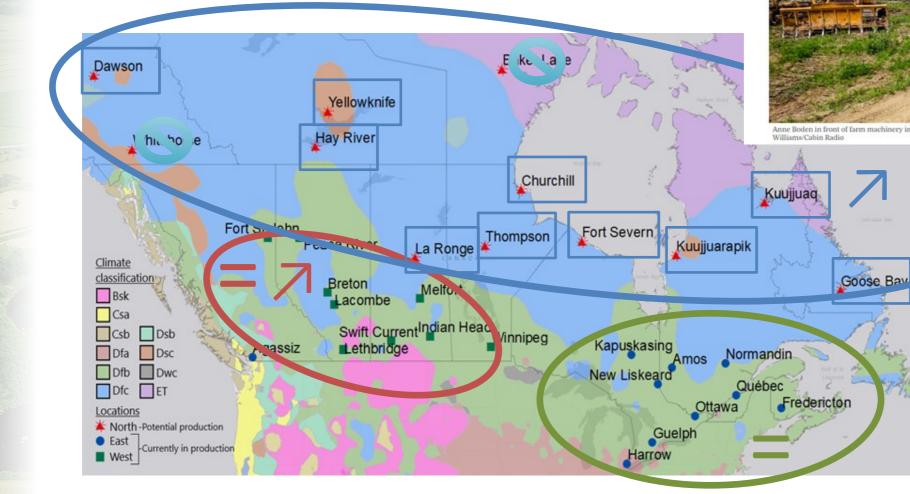
Except in western locations in the rainfed simulations with a tendency to decrease in the future

Crop failures are projected to decrease in northern locations in the future due to longer the growing season.

Results - Crop water stress in Ref, NF and DF

Average water stress predicted by the three crop models in Ref, NF and DF

- Almost no water stress in eastern locations
- Decrease of water stress in the future in western locations → increased water use efficiency due to increased [CO₂]
- Small variations in northern locations with great variability between locations


Hay River family plans 'NWT's largest commercial farm' Ollie Williams - June 10, 2018

Anne Boden in front of farm machinery in June 2018, as she worked to establish a potato farm. Ollie Williams/Cabin Radio

> Source : https://cabinradio.ca/7241 /news/economy/hay-riverfamily-plans-nwts-largestcommercial-farm/

Conclusion

Conclusion / perspectives

- Northward expansion of crops can cause environmental issues when natural areas (like boreal forest) are converted into agricultural land
- Studies are being done to limit these negative effects
- Limitations of this study
 - Nutrient (N, P, K) limitation not considered
 - Pests and diseases not considered
 - No genetic improvement
- Next step
 - Simulation of crop rotations to better account for the effect of CC on C and N cycles → Considering environmental variables in addition to yield

Canada

Agronomy Journa

Thank you ! Questions?

ALL UNIT

Received: 5 May 2023	Accepted: 25 September 2023
DOI: 10.1002/agj2.2148	2

ORIGINAL ARTICLE Crop Economics, Production, and Management

Spring barley yield and potential northward expansion under climate change in Canada

Guillaume Jégo¹ I Marianne Crépeau¹ | Qi Jing² | Brian Grant² | Ward Smith² | Alex J. Cannon³ | Jean Lafond⁴ | Miles Dyck⁵ | Budong Qian²

