

XIII STICS Seminar STICS - 13-16 November 2023 - Latresne (33)

Conceptualization, formalisms and first evaluations of a phosphorus module for the STICS soil-crop model

SEGHOUANI Mounir, BRAVIN N. Matthieu, LECHARPENTIER Patrice, MOLLIER Alain

1

Table of content

I) Context

II) Model description

Model summary and description of submodules and formalisms

III) Model Evaluation

Dataset presentation, model behaviour and first evaluations of P uptake and growth

IV) Conclusion

Context

First issue : Few models accounts for phosphorus cycle

 \rightarrow Need to develop crop models integrating the phosphorus cycle

Second issue : Most modelling works focus on simulating the P in the soil

 \rightarrow Need to correctly simulate crop response to soil P availability.

Third issue : Most modelling works focus on simulating one element at a time

 \rightarrow Need for models to handles multiple stresses effect.

Model description

Model Summary

Module 1 : Soil P availability

Does not account for organic P (Raguet et al., 2023)

Does not account for rhizospheric processes e.g (Mycorhizae, Citrates, Phosphatases...)

Module 2 : Plant P demand

P dilution is observed in maize crops from a threshold of 1t ha-1

Dilution Curves :
$$%P = a \times W^{-b}$$

Critical dilution curve (Optimum) \rightarrow Below which the crop is deficient in P \rightarrow Compute demand

Demand = (Δ Biomass x a_{crit} x (1-b_{crit}) x Biomass^{-bcrit})

Additional root demand => fixed root concentration parameter x Δ root_biomass

Module 3 : Phosphorus Uptake

Uptake is computed for each 1cm layer

Each layer is characterized by :

- Root Length density
- Soil Property

Roots are characterized by :

- Root radius (parameter)
- Mid-distance between roots (computed)

Effective P Uptake

2 Cases :

Module 4 : Phosphorus nutrition index (PNI)

Phosphorus deficiency feedback

Simulated effect :

1) Delay on developpement :

STICS reproduce development through a sum of development unit UPVT (based on degree.days UDEV).

We reduce UPVT proportionally to P shortage

2) Increase in leaf senescence :

Through a reduction of leaf lifespan proportional to P shortage.

AMF = Maximum growth rate of LAI LAX = Maximum LAI value stage

Module 5 : Phosphorus Partitioning

Evolution of P accumulation in plant parts across one cropping season

Model evaluation

Dataset

Long-term Phosphorus fertilization trial in South-Western France (Tartas) (1972-2004)

Crop : Maize (Irrigated and Sufficient N inputs)

Evaluated Years : 1995-1998

Treatments : P0 - P1.5 - P3

Cultivars : Volga (1995-1997), Cecillia (1998)

Variables : Yield, Dry Biomass, Leaf Area Index, Accumulated P and N in aerial parts and in grain

Model Behaviour : P uptake

Very contrasted simulated P uptake between treatments.

Treatment

Only initial P concentration in soil solution (Cp) that varies between treatments.

Greater variability due to Cp at low concentration.

Model Behaviour : Feedbacks

LAI LAI evolution (1997 cropping cycle)

Evaluation : P accumulation dynamic (Year : 1995)

Evaluation : Simulation of P uptake (end cycle)

Evaluation : Simulation of biomass

Conclusion and perspectives

Conclusion and perspectives

<u>Model able to reproduce main P effects</u> : Developpement delay, LAI reduction and shoot:root ratio variations.

Promising first simulations : Catch the dynamic of P accumulation as well as final plant P content and biomass.

Need to test the model on contrasted pedoclimatic conditions and different species. In order to validate the model and test the model robustness and genericity.

Thank you for your attention

Supplementary 1 - P1.5 final P content and biomass

Supplementary 2 - P-Olsen - Cp relation

Supplementary 3 - Shoot:Root ratio variations

