

XIII STICS user seminar 13-16 November 2023

Using a long-term experiment with a wide range of management practices to challenge N₂O emission modelling with the STICS model

P. Belleville¹, F. Ferchaud¹², F. Bornet¹, B. Dumont^{1,3}, J. Duval¹, E. Gréhan, B. Heinesch^{1,4}, F. Keuper¹, B. Mary¹, G. Vitte¹, J. Léonard¹

¹ INRAE, UMR Transfrontalière BioEcoAgro

² INRAE, UMR Eco&Sols

³Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Biosystems Dynamics and Exchanges (BIODYNE)

⁴Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Crop Science Unit

Fraterni

> Introduction

- N₂O is a problematic gas when released into the atmosphere because of its global warming potential
 - Agriculture is one of the main sources of N₂O emissions worldwide
 - Cropping systems have different N₂O emission levels
- Modelling has great potential to synthetize existing knowledge and identify best cropping systems to mitigate N₂O emissions
- N₂O emissions are challenging to predict due to high spatiotemporal variability and complex interconnected drivers
- Our aim is to assess STICS ability to simulate long-term N₂O emissions for contrasted cropping systems and to describe and analyse the error

Method - N₂O modelling withing STICS

STICS models two processes which set-up the order of magnitude of the nitrogen possibly available for N_2O emissions:

- nitrification of NH₄⁺ driven by [NH₄⁺], pH, T^oC, water content and
- denitrification of NO_3^{-1} driven by $[NO_3^{-1}]$, T°C, water filled pore space

N₂O-N emissions are described as a proportion of nitrification and denitrification rates:

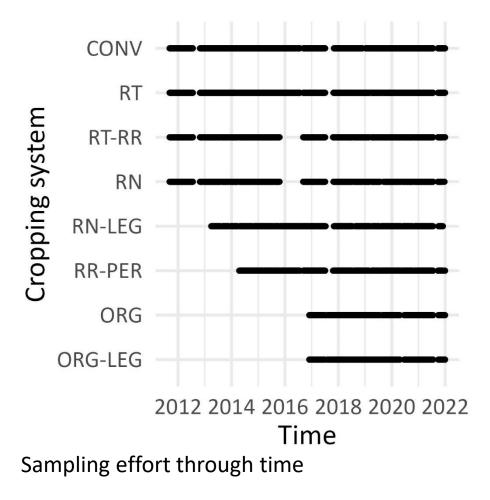
- The share of N-nitrified emited as N_2O is driven by WFPS
- The share of N-denitrified emited as N₂O is driven by pH, water filled pore space, [NO₃⁻]

Known limits:

- Carbon availability is not involved in the N₂O-module
- Instant, no-loss diffusion of N_2O from soil to the atmosphere

> Method - Experimental site and treatments

- Estrées-Mons deep silt loam oceanic with continental influence
- 6 treatments in a randomized complete 4-blocks design (11 ha) + 2 treatments in another randomized complete 3-blocks design (3 ha).


Treatment	CONV	RT	RT-RR	RN	RN- LEG	RR- PER	ORG	ORG- LEG
Plowing	\checkmark	×	×	\checkmark	\checkmark	×	\checkmark	\checkmark
Exportation of cash crop residues	×	×	\checkmark	×	×	\checkmark	×	×
Mineral N (% of ref. dose)	100%	100%	100%	35%	35%	100%	0%	0%
Legumes' frequency	low	low	low	low	high	low	low	high
Perennial crops within succession	×	×	×	×	×	\checkmark	×	×
Chemical protection	\checkmark	\checkmark	\checkmark	\checkmark	low	\checkmark	×	×

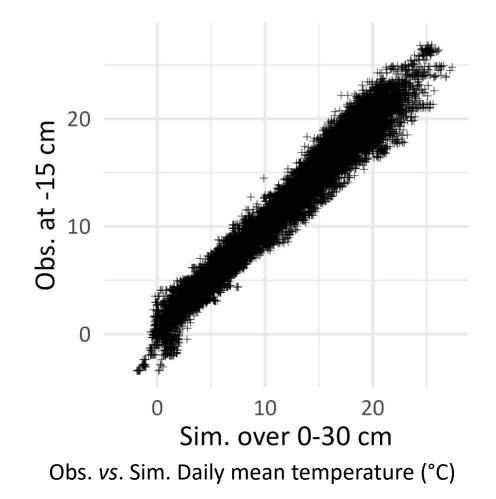
> Method - Experimental site and treatments

Automatic chamber monitoring N₂O fluxes

Method – STICS parameters

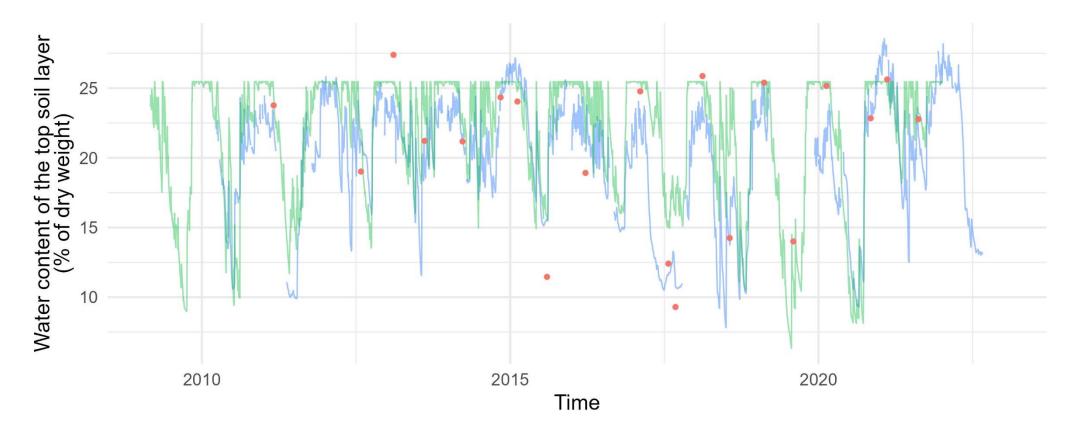
- Default parameters
- Gap in the order of magnitude of N₂O emissions → find a value for vpotdenit (kg_N.ha⁻¹.day⁻¹ over 0-20 cm) yielding in close cumulative emissions for CONV

 $vdenit = vpotdenit \times f(NO_3^-) \times f(Td) \times f(WFPS)$



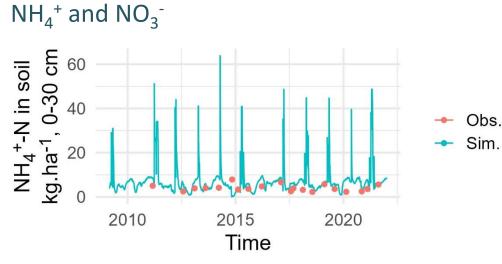
> Method - Simulation assessment and errors

- Variables of interest
 - Soil moisture, temperature, $[NH_4^+]$ and $[NO_3^-] + N_2O$ emissions
- Simulations assessment
 - Simulations vs Observations: scatterplot, temporal dynamic, cumulatives, standard indicators (R², RMSE)
- Describe prediction error
 - Is the difference between observed and simulated values explained by other variables? Is it possible to « predict » the error from other simulated values, and better understand the limits of the model?

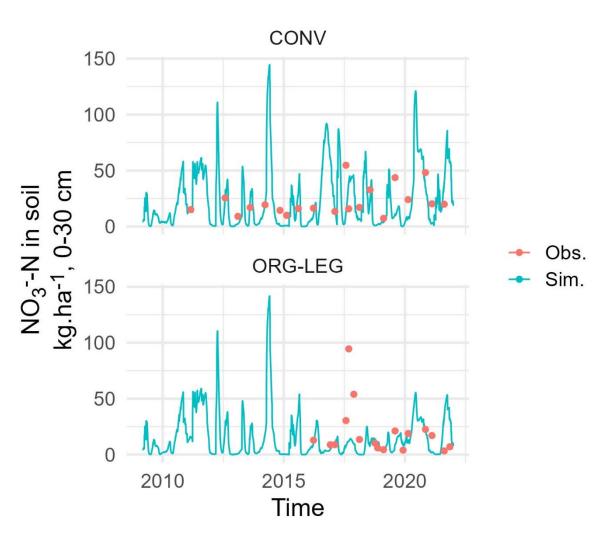


> Results – Simulation of N_2O drivers

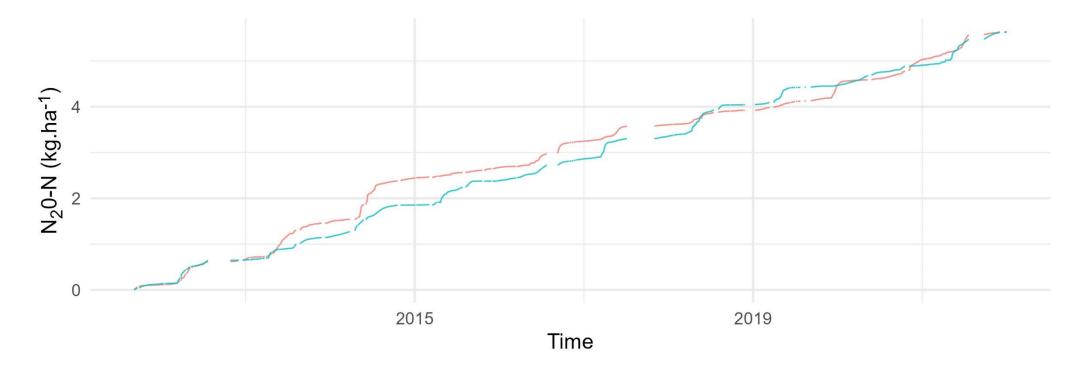
> Results – Simulation of N_2O drivers



- Pvt. - Sim. - Water content reflectometer

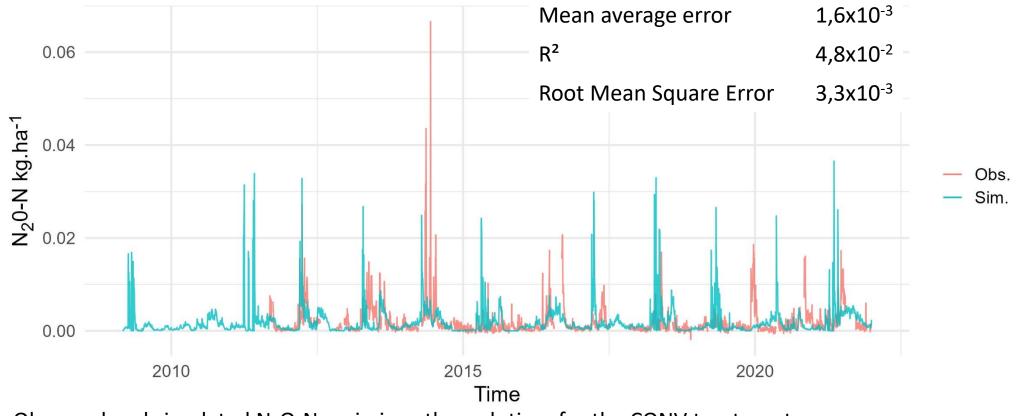

Comparison of three data sources for the estimation of the topsoil water content of the CONV treatment

> Results – Simulation of N_2O drivers


Ammonium-nitrogen in soil through time for the CONV treatment

Nitrate-nitrogen in soil through time for the CONV and the ORG-LEG treatments

Results – Adjusting the value of vpotdenit vpotdenit_s = 0.07 kg_N.ha⁻¹.day⁻¹ over 0-20 cm (default is 2)

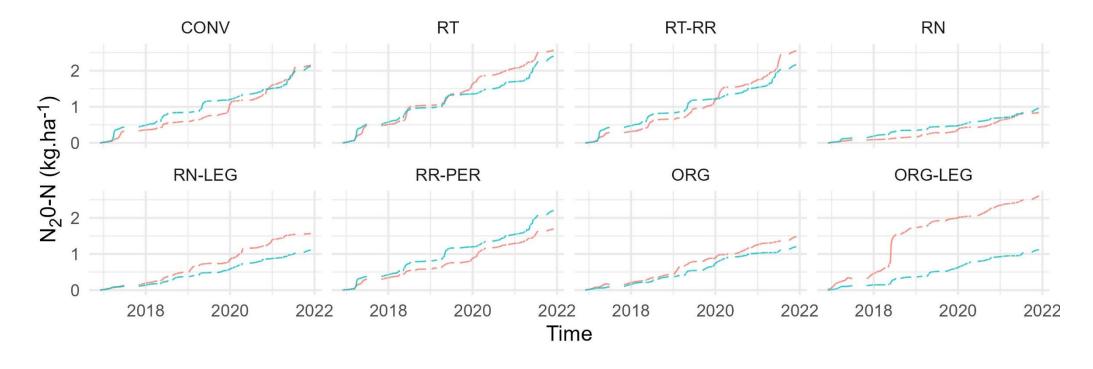

— Obs. — Sim.

Cumulated N_2O-N emissions for the CONV treatment using vpotdenit = 0,07

INRAØ XIII STICS user seminar 2023-11-15 / Paul Belleville

Results – Simulations of N₂O emissions

vpotdenit_S = 0.07 kg_{N} .ha⁻¹.day⁻¹ over 0-20 cm (default is 2)

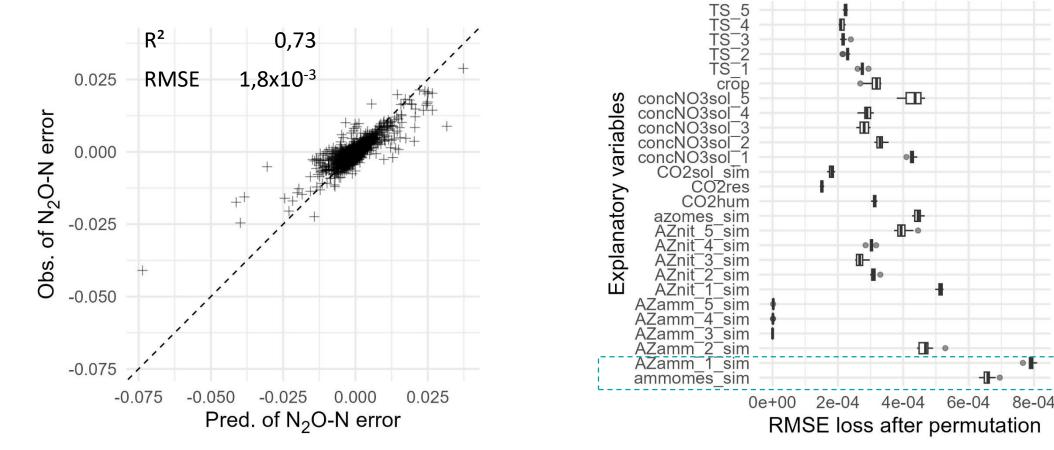

Observed and simulated N₂O-N emissions through time for the CONV treatment

INRA@

XIII STICS user seminar 2023-11-15 / Paul Belleville

Results – Simulations of N₂O emissions

vpotdenit_s = $0.07 \text{ kg}_{\text{N}}$.ha⁻¹.day⁻¹ over 0-20 cm (default is 2)

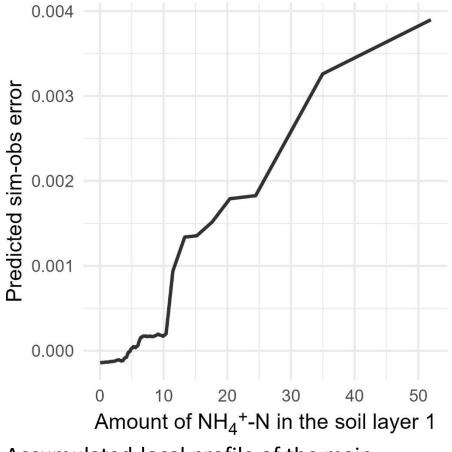

— Obs. — Sim.

Cumulated N₂O-N emissions for all treatments

INRAe

XIII STICS user seminar 2023-11-15 / Paul Belleville

Result – Predict STICS error on N₂O emissions



Assessment of the variable importance for predicting the sim-obs error

Prediction of N2O-N sim-obs error using Random Forest model on test dataset

XIII STICS user seminar 2023-11-15 / Paul Belleville

Results – Interpreting the random forest model

Accumulated-local profile of the main variable influencing the error

> Conclusion

- Simulation of N₂O emissions drivers
 - Soil temperature and soil moisture are considered as good enough
 - [NO₃⁻] is treatment-dependent
 - [NH₄⁺] is good for low concentration values but unknown for high concentration values.
- Simulation of N₂O
 - Despite bad R², the RMSE is low and the overall seasonality is simulated
 - Cumulative values are good except for the ORG-LEG treatment
- Understanding the error:
 - STICS error can be estimated using a random forest model fuelled by simulated variables
 - The amount of NH₄⁺ is the main variable contributing to the random forest

> Thank you for your attention!

5 mins for questions