> STICS ability to simulate long-term soil organic matter dynamics in crop-grassland rotations

CarSolEl - Construction of a methodology and a reference system for carbon flows in agricultural soils in cattle farming areas

Graux Anne-Isabelle, Alice Cadero, Samuel Buis, Eric Casellas, Marie-Laure Decau, Patrice Lecharpentier, Frédérique Louault, Loïc Strullu, Françoise Vertès, Fabien Ferchaud

Many environmental and agronomical factors

- Soil and climate conditions
- (current and past) Management
- Species composition of grasslands

difficult to quantify
=> often modelled

Grasslands ability to store C well recognized

Modelling the evolution of soil organic carbon (SOC) requires that models are sufficiently robust and accurate in their prediction

• Evaluated in arable crop systems, with satisfactory results (Autret et al., 2020; Yin et al., 2020; Clivot et al., 2020)

Not yet in rotations including temporary grasslands, nor in permanent grassland soils

=> CarSolEl's objective

How good is the simulation of long-term soil C evolution in these situations? Are the C inputs linked to the roots well simulated? Can simulation be improved through parameterization?

> Approach: model calibration & assessment

Used a research version derived from DUO Oct 2023

Fixes bugs regarding senescence & return to the soil of the residual shoot biomass after removal

Initial (standard grass file)

Revision of grassland parameters

based on previous works (Graux et al., 2020; Launay et al. 2020)

Activated options to simulate roots

"True density" to simulate
root emission and senescence
versus time and depth"Continuous trophic link" to
drive root length expansion by
shoot growth"Root deposition" to simulate
a daily recycling of dead root
biomass within the soil profile10 new root parameters (5 parameterized according to

useu uata from 5 long-term thais to camprate

oraturo

CTICC/20000 COC almulation

Revision of the value of **6 shoot parameters** to better represent the productive **grassland functional groups** (A, B) present in the experimental trials

Before optimisation

1 trial	2 trials	
Optimization of 5 root parameters	Assessment of the final grassland parameterization	
Anne-Isabelle Graux 14 November 2023	After optimisation = final	p. ,

> 3 long-term French trials: contrasting conditions

Kerbernez

Oceanic climate 3 Rotations: 1 with 3-year TG, **1 PG** SOM: 4.7%; COS: 81 t C/ha (0-25cm); WHC:190 mm 27 years (1978-2004) 7 obs. of SOC&SON + yield, %N (grassland, corn)

Lusignan Degraded oceanic climate 4 rotations with 3 or 6-year TG, 2 PG SOM: 1.9%; SOC: 48 t C/ha (0-30cm); WHC:180 mm 16 years (2005-2020); 6 obs. of SOC&SON + yield, %N (grassland, corn, wheat, barley); root BM %N %C (grassland); soil water and Nmin

Theix Semi-continental climate on mountain margins 4 PG SOM: 7%; COS 69 t C/ha (0-20cm); WHC: 80 mm 14 years (2004-2017); 3 obs. of SOC&SON + yield, %N (grassland)

> Root parameter optimisation

- 5 parameters involved in root simulation
 - Allocation of assimilates between shoot and root parts (krepracperm, repracpermin, repracpermax)
 - Root lifespan (debsenrac)
 - Root nitrogen demand (parazorac)
- Nelder-Meade simplex method (CroptimizR package)
- Data from Lusignan trial
 - The most numerous and reliable, with root observations
 - 4 rotations and 2 permanent grasslands
 - T1: a rotation of maize wheat barley
 - **T2**: T1 + **3 yrs.** of grassland, highly fertilized and cut
 - T3: T1 + 6 yrs. of grassland , highly fertilized and cut
 - T4: T1 + 6 yrs. of grassland , low fertilized and cut
 - T5: permanent grassland, fertilized and cut
 - T7: permanent grassland, fertilized and grazed

> Root parameter optimisation

• Adjustment on several sets of variables

opti.	SOC	Cutting yield	Grass N content	Root C	Root N
opti1	Х	x			
opti2	Х	x	Х		
opti3	Х	x		Х	Х
opti4	Х	X	Х	Х	X

• Root mean square errors (Lusignan)

	SOC	Cutting yield	Grass N content	Root C	Root N
X	(kg C ha ⁻¹)	(t DM ha-1)	(% or 10gN kg ⁻¹)	(kg C ha ⁻¹)	(kg C ha ⁻¹)
initial	1912	1.37	1.07	NA	NA
before opti	1886	1.02	0.76	2628	81
after opti1	1731 💛	1.02 💛	0.85 🙂	2828	93
after opti2	1959 🙂	1.07 😐	0.64 😕	3127 😐	93 🙁
after opti3	2048 😐	1.01 😐	0.75 👩	1110 😐	36 👱
after opti4	2004 😐	1.04 😐	0.70 👝	1115 👝	38 👝
	•		-		

> Root parameter optimisation

Parameter	Before optimisation	opti1	opti2	opti3	opti4
krepracperm	1.27	2.38	2.00	2.80	2.95
debsenrac	1200	358	247	3594	2987
parazorac	NA	56.3	20.7	22.6	21.3
repracpermin	0.25	0.38	0.49	0.36	0.41
repracpermax	0.65	0.91	0.12	0.67	0.57

Fraction of assimilates allocated each day to the roots, out of the total

• 🧷 in root lifespan

•

 parazorac = root C/N for INN=1

dynamics of
assimilate allocation
between shoot and
roots close to those
before optimization,
but with more
assimilates allocated
to roots from urac=2

> Comparison of SOC (opti. N°3)

- SOC of all rotations and permanent grasslands within the range of observations
- Slight increase in RMSE after optimization

Comparison of grassland yields and grass N contents (opti. N°3)

No change in simulated cutting yield and grass nitrogen content

> Comparison of root C (opti N°3)

- Root C dynamics clearly better simulated after optimization (RMSE divided by 2.3)
- Same for root N

Model assessment - Kerbernez site simulation 2 silage maize monocultures: A with only ammonitrate, B with both ammonitrate

- 2 silage maize monocultures: A with only ammonitrate, B with both ammonitrate and cattle or pig manure
- 2 grasslands alternating with corn, cut 5 times/year, with \approx 250 kg N/ha/year

- Uncertainty surrounding observations in the 2nd half of the trial
- SOC dynamics under temporary and permanent grassland quite well represented, as well as grass DM yields and N content

Anne-Isabelle Graux 14 November 2023

> Model assessment - Theix site simulation

 4 permanent grasslands, cut 3 times a year, with 250 kg N/ha/year (N+) or no N fertilizer (N-), with soil heterogeneity between blocks

- A few observations with very high variability, 2016 samples not yet analyzed
- SOC dynamics quite well represented (N+: maintained SOC; N-: ↘ SOC, perhaps too large in relation to the trend observed)

Anne-Isabelle Graux 14 November 2023

> Model assessment - orders of magnitude

- Simulated grass root/shoot ratio at IAMF stage
 - within the expected range from 0.8 to 26 (Poeplau, 2016); Median ≈ 4.2 4.5 (Mokany et al. 2006)
 - But ratio is not higher in fertilized treatments (higher investment of plants in roots for N acquisition under N deficiency according to Poeplau, 2016)

> Model assessment - orders of magnitude

- Simulated grass root C/N ratio
 - Simulated values within the expected range from 36 to 118 kg C (kg N)⁻¹ (Legay et al., 2016)
 - Higher C/N ratio in unfertilized or lightly fertilized treatments

- Encouraging results
 - Without revising the formalisms, satisfactory simulation of SOC under temporary and permanent grasslands
 - A more realistic representation of roots with a parameterization that improves root C and N simulation
 - **Consistent orders of magnitude** for root biomass, root/shoot ratio, N content and root C/N ratio
- A parameterization reserved for productive grasslands
 - Composed of species with a resource capture/rapid organ recycling strategy (groups A, B, b after Cruz et al. 2010)

> Thank you for your attention

A long job that started in 2019 Importance of computing platforms for optimizations Importance of long-term trials in these modelling exercises! With still too little data on roots, and too little representation of grassland diversity Photo : L. Delab

> STICS SOM simulation

Mechanistic

- C & N fluxes in the soil-plant system
- Limited to topsoil layer
 - (Formerly) worked horizon
 - Below: C inputs from dead roots
- \Rightarrow Evaluation focused on this soil layer

Compartmentalized

3 "pools" with ≠ average C&N residence time

- Fresh OM (on the surface, buried by tillage)
- Microbial biomass
- Humified OM (active / inert)

STICS SOM simulation ... depends on

Soil initialization :

- Initial SOC and its distribution between active and inert fractions
- Cropping history => inert fraction between 0.4 (permanent grasslands) and
 0.65 (Crop rotations)

Soil/climate conditions with SOC mineralisation favored by :

- Acid soils, soils poor in clay and limestone
- Hot, humid conditions, high mineral N availability

Soil C inputs associated with :

- Simulated management (organic inputs, crop residues)
- Plant simulation: biomass quantity, aerial/root partitioning, senescence

- Dynamic distribution of assimilates between shoot and root parts
 - REPRAC = fraction allocated each day to the roots out of the total; function of a root development unit and 3 (optimized) parameters

p. 20

- Length of living roots RL
 - Calculated from integration of RLJ
- Daily senescence of RL and production of dead roots => fresh MO
 - function of a sum of degree-days = root lifespan (optimized)
- Conversion of total root length (living+dead) into root biomass
- Fixed C content (380 g C/kg DM) but variable N content
 - N uptake = minimum between soil N availability and canopy N demand (sum of N demands of different organs); priority to roots
- Root N demand
 - function of RLJ, cover NNI and parameter = root C/N ratio for NNI = 1 (optimized)

> Parameterization details

Revision of grassland parameters based on previous works

parameter	value	source
adilmax	7.8	Graux et al., 2020
extin	0.6	Graux et al., 2020
masecNmax	3	Graux et al., 2020
pgrainmaxi	0.0022	
parazofmorte	22.5	Legay et al., 2016
ratiodurviel	1	Graux et al., 2020
ratiosen	0.3	Graux et al., 2020
sensrsec	0.9	Launay et al., 2020
tcmax	26.5	Graux et al., 2020
tcmin	5	Graux et al., 2020
temax	26.5	Graux et al., 2020
temin	5	Graux et al., 2020
teopt	12	Graux et al., 2020
teoptbis	20.5	Graux et al., 2020

INRA

Anne-Isabelle Graux 14 November 2023

> Parameterization details

Grassland parameters involved in newly activated options

parameter	all groups	source
draclong	400	
lvfront	0.05	
alloperirac	0.23	
kdisrac	0.00110	

Revision of the value of **6 shoot + 1 root parameters** to better represent the productive **grassland functional groups** (A, B) present in the experimental trials

parameter	Α	В	source
durvieF	120	150	Cruz et al., 2010 (transformed into Q10 time)
efcroijuv	2	1.88	Duru et al., 2009 et 2010
efcroiveg	2.97	2.56	Duru et al., 2009 et 2010
efcroirepro	2.65	2.38	Duru et al., 2009 et 2010
longsperac	21333	21333	Fort et al., 2013
slamax	287	287	Cruz et al., 2010
slamin	177	177	Cruz et al., 2010

Anne-Isabelle Graux 14 November 2023

> 3 long-term French trials : contrasting conditions

Kerbernez

Oceanic climate, 36 m a.s.l Treatment = rotation (1 to 3 rep.); 1 unit: 144 m² 4 Rotations: 1 with 3-year TG, 1 PG SOM: 4.7%; COS: 81t C/ha (0-25cm); WHC:190mm 27 years (1978-2004); 7 obs. of SOC&SON; +yield, %N (grassland, maize)

Lusignan

INRA

Anne-Isabelle Graux

14 November 2023

Degraded oceanic climate, 150 m a.s.l. Treatment = rotation (4 rep.); 1 unit: 4000m² 4 rotations: 3 with 3 or 6 year TG, 2 PG SOM: 1.9%; SOC: 48t C/ha (0-30cm); WHC:180mm 15 years (2005-2020); 6 obs. of SOC&SON;+ yield and %N (grassland, maize, wheat, barley); root BM %N %C (grassland); soil water and Nmin Most grasslands are cut, but one is grazed

Theix

Semi-continental climate on mountain margins, 890 m a.s.l. Treatment = fert x soil (4 rep.); 1 unit: 350m² 4 PG SOM: 7%; COS 69 t C/ha (0-20cm); WHC: 80mm 14 years (2004-2017); 3 obs. of SOC&SON + yield, %N (grassland)

> Calculs pour évaluer STICS

- Calcul des stocks observés (kg/ha)
 - SOC = masse de terre fine (M, t de terre fine/ha) x teneur en C (g C/kg terre fine)
 - SON = masse de terre fine (M, t de terre fine/ha) x teneur en N (g N/kg terre fine)

Avec M = épaisseur (cm) x densité intrinsèque de terre fine (g/cm³) x (1 – Volume de cailloux (%) /100) *x 100

• Calcul des variations de stocks sur la période (kg/ha/an)

	Kerbernez	Lusignan	Theix
début	1978	2005	2005
fin	2004	2016	2012
Ν	27	12	8

• var_stock = (stock final – stock initial) / nombre N d'années

> Comparison of root N (opti N°3)

> Model assessment - orders of magnitude

- Simulated grass root biomass
 - within the expected range from 5 to 31 t DM ha⁻¹ (Legay et al., 2016; Mokany et al., 2006; Poeplau, 2016)
 - lower biomass in unfertilized or lightly fertilized treatments

Anne-Isabelle Graux 14 November 2023

INRA

> Model assessment - orders of magnitude

- Simulated grass N content
 - within the expected range from 1 to 40 mg N (g DM)⁻¹ (Freschet et al. 2017) with most values from 4 to 12 mg N (g DM)⁻¹ (Legay et al., 2016);

