

XIIIth Workshop of developers and users of the soil-plant model STICS

The STICS model: Organization and progress

13-16 november 2023, Bordeaux

Presented by the Stics team coordination cell Realised with the involvement of the Stics Project Team

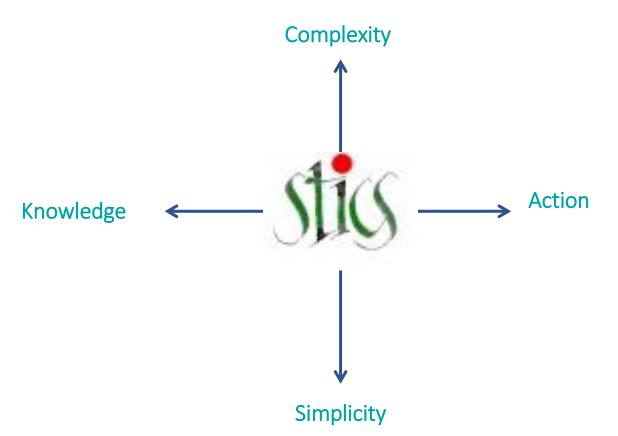
@STICS_CropModel #STICS2023 #STICSBordeaux https://www6.paca.inrae.fr/stics_eng/

Outline

The STICS scientific community and its activities

Highlights 2020-2023

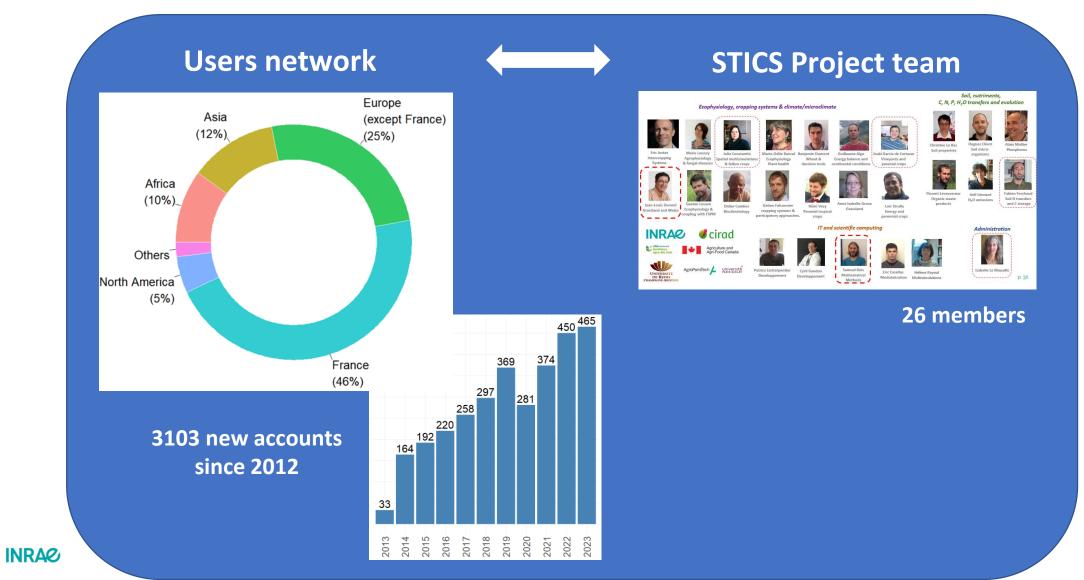
Perspectives



> The STICS scientific community and its activities

Objectives

Process based model of crops at field level,
balanced in terms of complexity level,
appropriate for both scientific research on agro-ecosystems
and for agro-ecological engineering



STICS objectives

- A tool box: Integrate the newest knowledge on atmosphere / plant / soil processes (e.g. P cycle, C & N reserves pools in perennials)
- A tool: Research at field level = mass and energy flux between atmosphere, plants and soil (e.g. benchmarking of cropping systems in terms of N flux in environment, impacts of climate change on yields and resources use)
- A tool piece: Contribute to operational tools for applied usage, at field or larger scales (e.g. regional production index, Biosphere models, automation, serious games...)

> STICS users network and project team

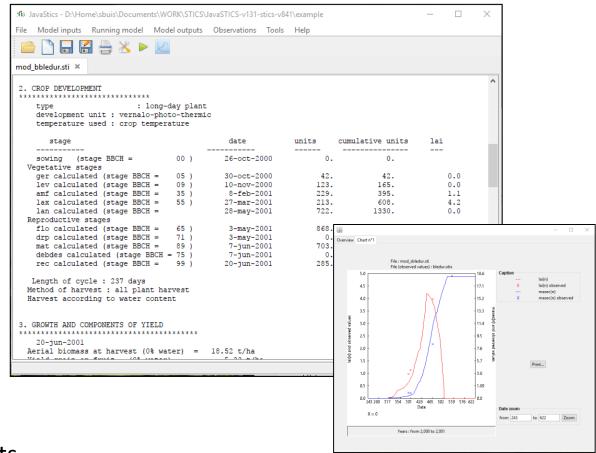
> STICS users network and project team

EPS (Stics Project Team): 26 researchers / engineers

- standard version: evolution, performances, diffusion, training
- development of research versions
- development of tools for the model
- coordination of the users network

GUS (Stics Users Group): network of STICS users

- scientific works performed with the model
- participation to the evolution of the model


> Tools and software

STICS Crop model

- ~120 000 Fortran code lines
- One exe for all crops
- Linux/Mac/Windows compatible
- Exe and source code distribution
- Free Software Licence (CECILL-C)

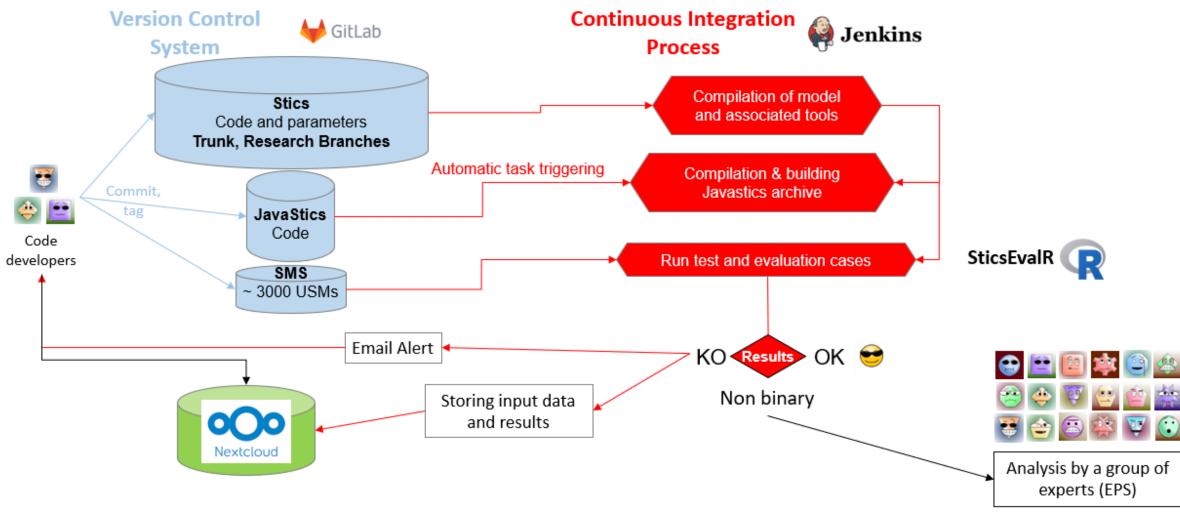
JavaStics GUI

- Managing model inputs
- Running simulations (single / multiple, independent / linked, monocultures or intercropping)
- Parameters optimisation
- Graphical representation of simulated outputs

> Tools and software

SticsRpacks: scripting tools and coupling with mathematical methods

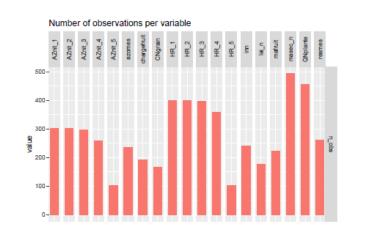
• R packages collection, open source https://github.com/SticsRPacks



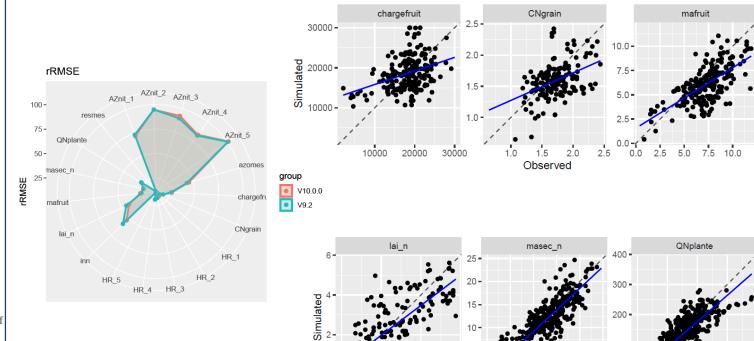
- Finding names and setting parameters and variables
- Handling input and output files
- Running simulations (parallel, forcing parameters, etc.)
- CroptimizR and CroPlotR: generic packages for coupling crop models with mathematical methods:
 - Parameter estimation (Bayesian / frequentist, choice of criterion, consideration of constraints, AgMIP protocols, etc.)
 - Plots and statistical criteria

Used with various models: STICS, ApsimX, SiriusQuality, DSSAT + AgMIP calibration protocol (Hermes, Daisy, Monica, PG ..., see Wallach et al. 2023)

> Test and evaluation: automatic system



> Test and evaluation: evaluation reports

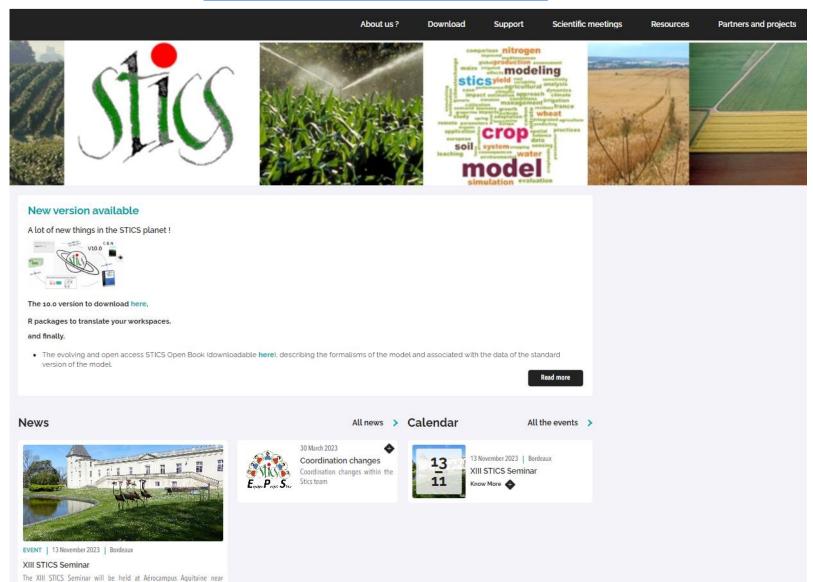

Evaluation reports distributed for grass, maize, winter wheat, miscanthus, bare soil

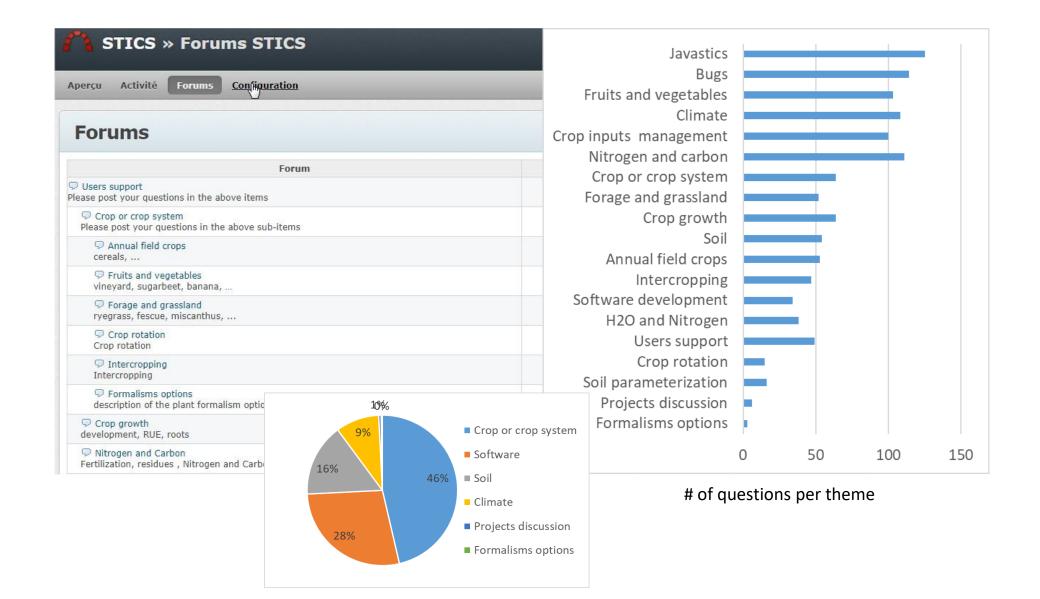
The evaluation dataset includes 222 USMs not used for model calibration, 9 cultivars and a large number of observations (>90) for all evaluated variables.

- Description of the evaluation dataset
- Evolution of performances wrt former Stics versions
- Global and specific analysis of performances

@STICS_CropModel #STICS2023 #STICSBordea https://www6.paca.inrae.fr/stics_eng/

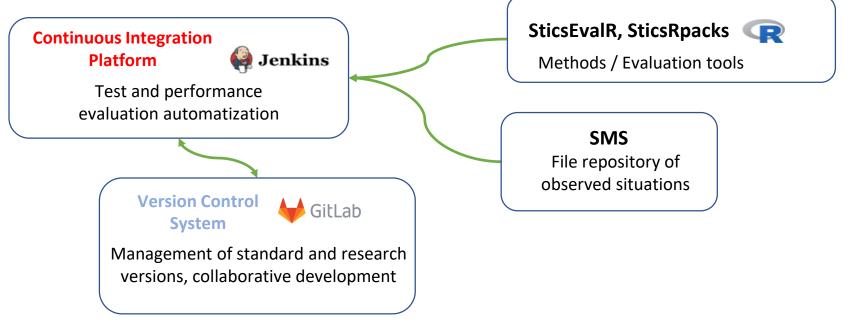
> Links between user network and project team


- ☐ Communication: website, forum, email list
- ☐ Training courses
- ☐ Contribution to STICS development
- **☐** STICS seminars



> The STICS website

https://eng-stics.paca.hub.inrae.fr/


> The STICS forum

Contribution to STICS development

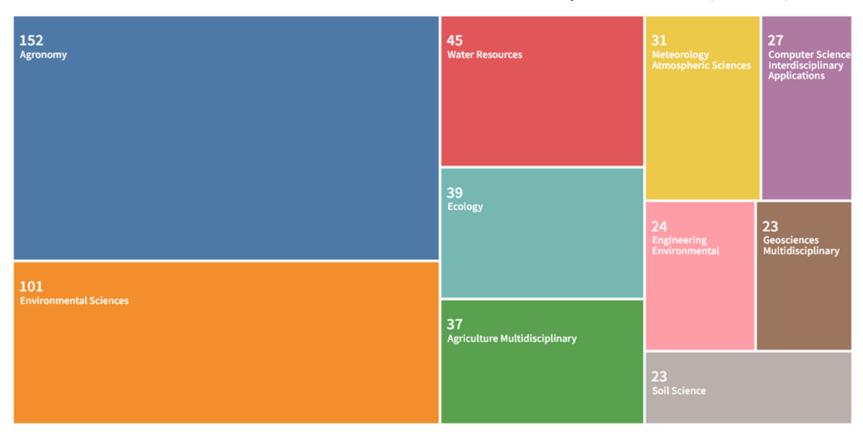
Open to user experts

- ⇒ Improvement / implementation of formalisms, (re)Parameterization of crops / cultivars, ...
- ⇒ Research branches opened on demand
- ⇒Access to the team development environment (versioning system, automatic tests, data base, ...)
- ⇒ Protocols for integration of the proposed modifications in the standard version

> The STICS workshop

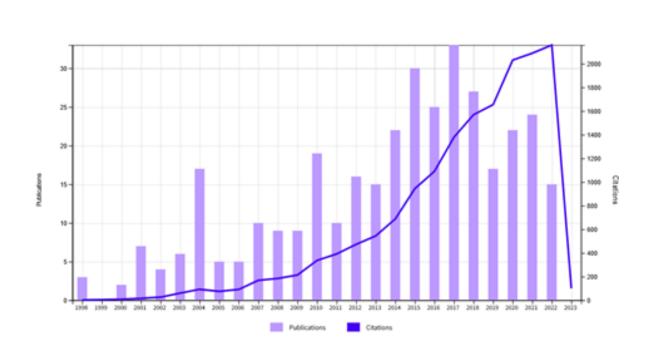
Every two years

2003 Arles, 2005 Carry le Rouet, 2007 Reims, 2010 Sorèze, 2012 Sainte Montaine, 2015 Rennes, 2017 La Rochelle, 2020 Montpellier (ICROPM 2020), 2023 Bordeaux


XIII Séminaire STICS - 13-14-15 et 16 Novembre 2023

> The scientific community: Publications and citations

352 articles retrieved from the WOS for a total of 392 articles -> cited by 10159 articles (fev. 2023)



Agronomy and environment: 50% Water resources and ecology: 17 %

> The scientific community: Publications and citations

In February 2023: 352 publications WOS cited in more than 10 000 articles (/ Feb 2020)

> Highlights 2020-2023

Evolution of the STICS Team: the team in 2023

Ecophysiology, cropping systems & climate/microclimate

Eric Justes Intercropping **Systems**

Jean-Louis Durand

Grassland and Maize

Marie Launay Agrophysiology & fungal diseases \

Julie Constantin Long-term simulations. Cover crops

Marie-Odile Bancal **Ecophysiology** Plant health

Benjamin Dumont Wheat & decision tools

Guillaume Jégo **Energy balance and** continental conditions

Inaki Garcia de Cortazar Vineyards and perenial crops

Christine Le Bas Soil properties

Soil, nutriments, C, N, H₂O transfers and evolution

Hugues Clivot Soil microorganisms

Alain Mollier Phosphorus

Fabien Ferchaud Soil N transfers and C storage

Gaetan Louarn Ecophysiology & coupling with FSPM

Didier Combes Bioclimatology

Gatien Falconnier cropping systems & participatory approaches.

Rémi Vezy **Perennial tropical** crops

Anne Isabelle Graux Grassland

Loïc Strullu **Energy and** perennial crops

Organic waste products

Joël Léonard N₂O emissions

Administration

Isabelle Le Mouëllic

Patrice Lecharpentier Development

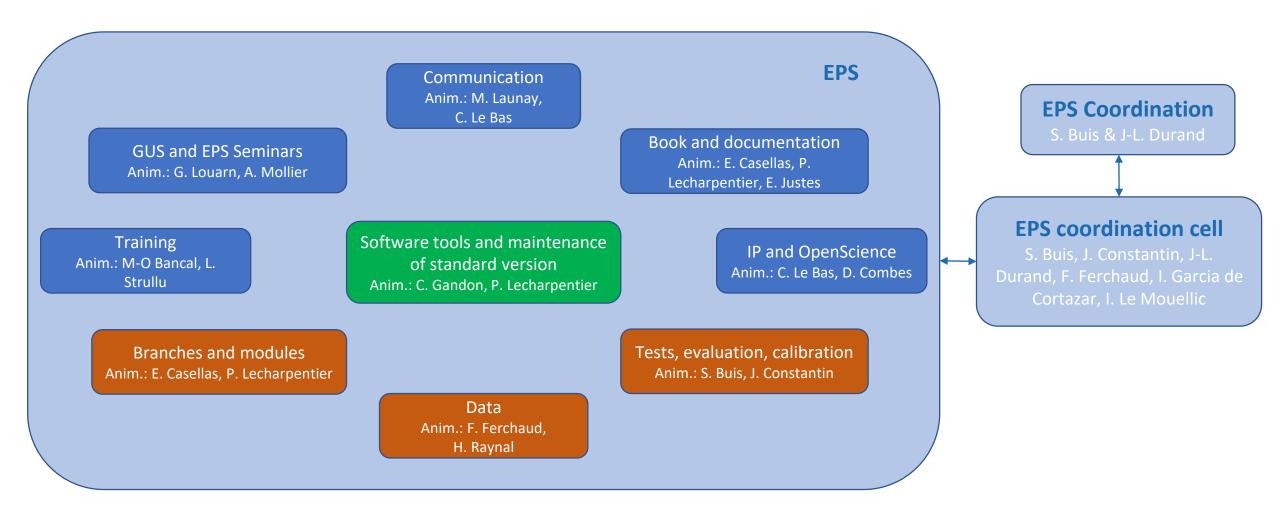
IT and scientific computing

Samuel Buis Mathematical Methods

Eric Casellas Modularization

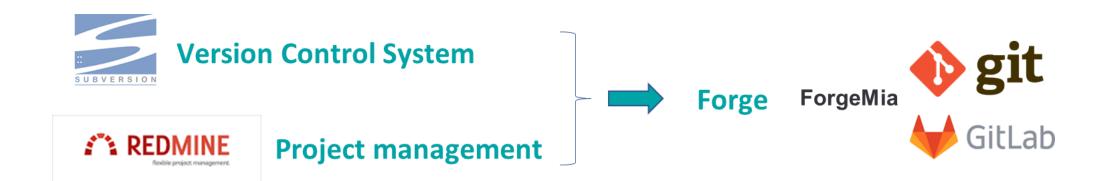
Hélène Raynal Multisimulations

Cyril Gandon Development


Retirements: Bruno, Domi, Françoise, Nicolas, Patrick

Departure: François

Newcomers: Cyril, Didier, Isabelle, Hélène, Hugues, Marie-Odile


Change of the animation cell

> Evolution of the STICS Team: working groups

> Evolution of code management

- Global **Code reviewing** => cleaning, improvement of robustness, increasing strictness of the compiler...
- Moving towards **Modern Fortran (2018)**: modules everywhere, dynamic memory allocation, use Fortran Package Manager (fpm) and Fortran Standard Library (stdlib)

- **Continuous Integration** in GitLab forge: compilation, unit tests and End 2 End tests

> Evolution of code availability

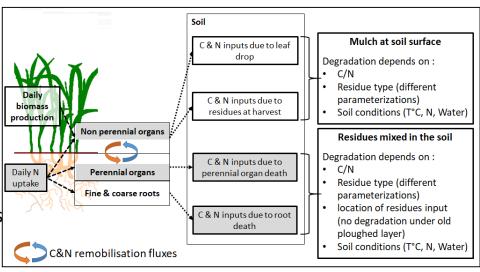
STICS is open source since beginning 2021 (V9.2 and following)

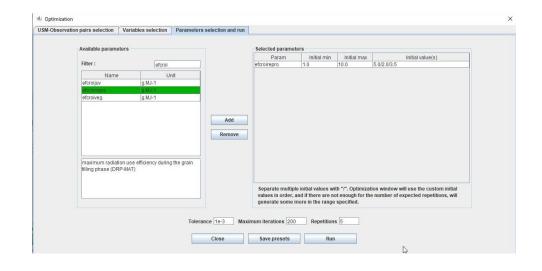
- Distributed under CeCILL-C license
 - Free Software license
 - => use of STICS code is free for any purpose
 - Weak copyleft license
 - => if you modify the STICS code **AND** diffuse it, it must be under CeCILL-C license
- Source code available on Redmine

> STICS V10.0 and JavaSTICS 1.5.1

- \Rightarrow Available since 27/10/2022
- \Rightarrow >1200 downloads

New Formalisms

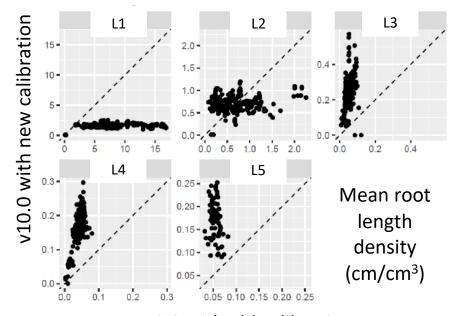

- Better consideration of reserves (C&N) for perennial crops
- Dynamic description of N demand and root death
- Introduction of effect of photoperiod on biomass and N allocation
- Improvement of effect of mowing dynamic on biomass production
- Possibility of destruction of perenial crops and effects on successions


New crops

- Miscanthus
- New parameterization for wheat

Features:

- Improvement of parameter optimization procedure
- Improvement of dynamic graphs management
- Improvement of ergonomy and responsiveness
- Use of java 11
- · Improvement of simulation speed
- Some bugs fixed



STICST

> Improvement of root parameterization

- STICS v10.0 includes **new formalisms** to simulate the daily allocation on N to root growth, the root turnover during crop growth and to improve the vertical distribution of roots in the soil profile
- Using these new options requires to **revise root calibration** in order to simulate correctly not only the crop water and N uptake but also the C and N fluxes in the soil linked to root dynamics
- Definition of a methodology to calibrate root parameters, based on:
 - ✓ sequential activation of new options and calibration of the corresponding parameters using literature data and/or other models (ArchiSimple)
 - ✓ comparison between simulated root variables and literature data (shoot:root, N in roots, etc.)
 - ✓ global evaluation using the STICS evaluation database
- Application to alfalfa, maize, pea, rapeseed, winter barley and winter wheat

Ex.: simulated root length density of winter wheat for different soil layers

INRAe

> SticsRPacks: new versions

=> See presentation Buis & Lecharpentier at 14:00

Research branches

Perennial crops

Integrated into STICS v10.0.0 (oct. 2022)

Intercrops

• Improved formalisms to simulate cereal-legume mixtures => Juste et al. (Thursday at 08:45)

Viticycle

Improved formalisms to simulate grapevine yield => Strullu et al. (Tuesday 16:30)

Phosphorus

Integration of the P cycle in STICS => Seghouani et al. (Wednesday 10:30)

Grassland

 Corrections for grassland (senescence of the residual biomass after cutting, C and N inputs to soil with grazing) => Graux et al. (Tuesday 14:40 and Wednesday 14:40)

Pathogen (crop foliage diseases)

Recoding in modular format and new formalisms => Vidal et al. (Wednesday 14:00)

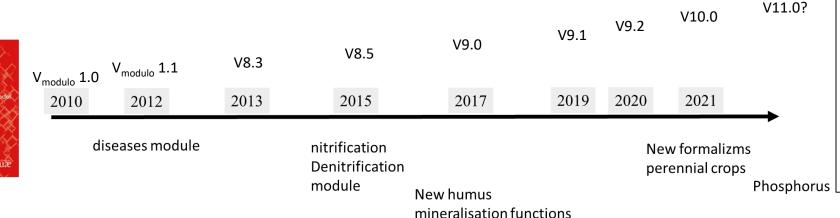
> IDE-STICS

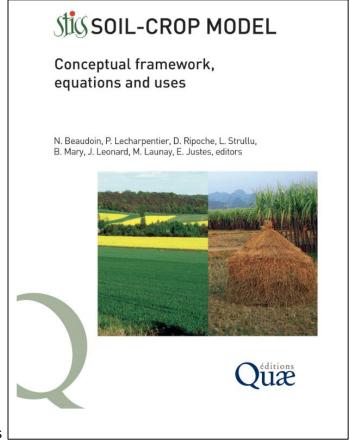
Why?

- Gather experimental data useful to test STICS, with a large range of soil, climate, managements and output variables
- Include model inputs, observed data and metadata

How?

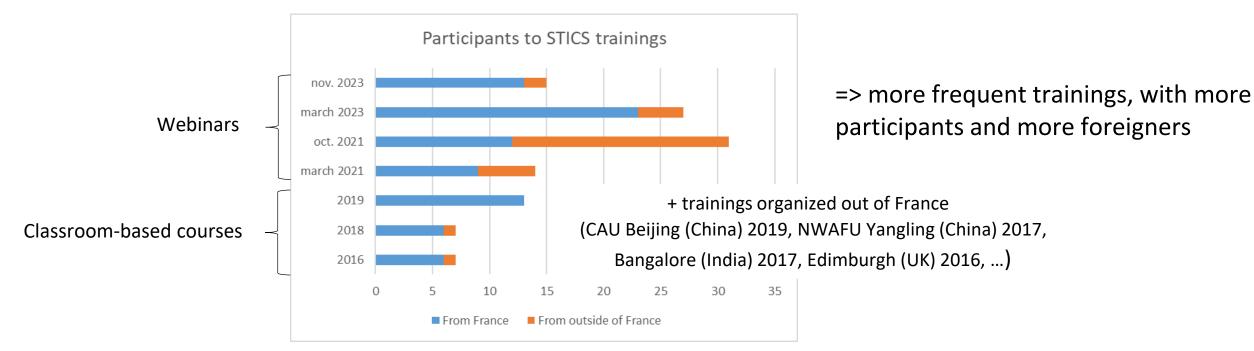
- An SQL database and a web interface
- Main functions:
 - Input of STICS files (workspace) and an Excel metadata file
 - Visualize available data
 - Search and data export (formatted for STICS)


Where are we?


Under development and test, first version soon available

> Documentation: the STICS book, new edition

- 29 authors, ~300 pages
- Electronic version available for free (CC BY-NC-ND license): httml, epub, pdf
- Paper edition <u>on order</u>
- Objective: continuous evolution according to the versions of the model (RMD format under version management system)



> A new design for STICS Trainings

- Update of course materials for STICS V10
- Training session divided in modules
- Practical use of STICS from JavaSTICS and R packages
- Webinar instead of classroom-based courses

Module 1	Module 2	Module 3 (option)	Module 4	Module 5
Stics overviewSoil processes formalims	Crop growth and development	R packages for STICS	Specificities of perennial crops and crop rotations	 Model evaluation and calibration: principles and existing tools
PW 1: JavaSTICS interface Creation of a USM	PW 2: Effect of cultural practices, soil and climate on model outputs (plant and environment) + Homework presentation	Inter-cropping	PW 3: Simulation of crop rotations including a perennial crop	PW 4: Integration of observed data and example of parameter calibration Presentation of homework results

Some projects

REDELAC project - studies the impact of climate change on dairy farms (P. Chabrier, Al Graux)

CarSolEl project - carbon storage (Al. Graux)

Agriphotovoltaic (J. Vernier)

Viticycle project - Grapevine yield simulation in Champagne (L. Strullu)

ISOP V10 - Update of ISOP system with the new STICS version (JL. Durand)

AgMIP calibration project - last results using the STICS (S. Buis)

Soybean ERANET and ANR project - European production (J. Constantin)

Intercropping projects (InterCropValues) - formalisms evaluation (Vezy, de Freitas, Kherif)

https://www6.paca.inrae.fr/stics_eng/

and many others about different topics, focus on different objectives, and funded by different institutions

@STICS_CropModel #STICS2023 #STICSBordeaux

Perspectives

Software

Integrate research branches in standard version

- Intercrop
- Vineyard
- Grassland
- •

Provide new parameterizations

• alfalfa, maize, pea, rapeseed, winter barley, ...

Facilitate contributions

- adapt contribution rules and tools to new version control and evaluation systems
- make contribution rules more visible and friendly
- provide more documentation for developers

Change license of JavaSTICS and STICS executable (=> CeCILL-* license)

Documentation, data and evaluation

Deliver first version of IDE-STICS and integrate new datasets

Improve automatic test and evaluation system

- add new type of automatic evaluation (long term, intercrops, ...)
- generate and distribute evaluation reports for more crops
- integrate IDE-STICS

Make the STICS book evolve with new model versions

> Communication and training

Revise website content

Build a new advanced training module on how to adapt STICS to new crops / cultivars

Transfer

As a tool for action, STICS is requested by various agencies, territories,

- —> impact of land management on water quality
- —> impact on C sequestration
- —> optimization of solar panels operations over crops
- —> evaluate the crop losses for farmers subsides

etc....

The STICS team EPS always engaged in many of such tasks.

However, the STICS team cannot satisfy the full fast **growing** demand.

Still, within the framework of institutional goals, INRAE, CIRAD ... the STICS team needs to answer.

- —> Need for organizing three ways currently explored by the STICS team:
- Capacity building. The formation STICS, two sessions per year, aprox 20 students per session in France and abroad
- Supervision of PhD with partners (CIFRE...) and promote the employment of PhD with modeling skills
- METYS business unit of the INRAE subsidiary INRAE Transfert include STICS modelers (under evaluation)

> And now ...

- Thanks to be there
- Have a good workshop
- Idea box available!

